COMPREHENSIVE GC-MS METHOD FOR THE ESTIMATION OF EXTRACTABLE ORTHO-PHENYLPHENOLS (OPPS) CONTENTS IN TEXTILE AND LEATHER TEST SPECIMENS
Keywords:
Ortho-phenylphenol (OPP), Alkaline digestion, Leather & Textile samples, Solvent extraction, GC-MS AnalysisAbstract
A new method was established for determination of extractable ortho-phenylphenol (OPP) contents, its salts and esters in textile and leather test specimens. 0.1 M potassium hydroxide assisted with ultrasonic bath was used for alkaline digestion of test specimens. Test specimens were acetylated using acetic anhydride assisted with mechanical shaker at 200 rpm for 60 mins time. OPP contents were extracted in n-Hexane and were analyzed using fused silica capillary HP-5MS column. Helium gas 99.9 % purity was used as mobile phase. One target and two qualifier ions were selected for target analyte in GC-MS under selective ion monitoring (SIM) mode. Pre-treatment parameters as extraction method, solvent and time were optimized. Under optimized conditions recovery of standard was in the range of 93 to 98 %. Linearity was with regression value 0.9993-0.9995. Calibration curve working range was 0.1-5.0 mg L-1. Relative standard deviation (RSD) was up to 10% for test specimens and 5% for pure standards. Limit of detection was up to 0.006 mg L-1 level. From actual test specimens OPP contents were successfully analyzed using developed analytical method. OPP contents found were 1.15 to 35.52 mg L-1.
References
1. Balakrishnan, S., & Eastmond, D. A. (2006). Mechanisms of genotoxicity of orthophenylphenol. Food and Chemical Toxicology, 44(8), 1340–1347.
https://doi.org/10.1016/j.fct.2006.01.011
2. Brusick, D. (2005). A critical review of the genetic toxicity of ortho-phenylphenol.
Environmental and Molecular Mutagenesis, 45(5), 460–481.
https://doi.org/10.1002/em.20118
3. Coelhan, M., Bromig, K.-H., Glas, K., & Roberts, A. L. (2006). Determination of
ortho-phenylphenol in food using gas chromatography. Journal of Agricultural and
Food Chemistry, 54(16), 5731–5735. https://doi.org/10.1021/jf060560h
4. Coelhan, M., Yu, J. T., & Roberts, A. L. (2009). Stability of ortho-phenylphenol
residues in food matrices. Food Chemistry, 112(2), 515–519.
https://doi.org/10.1016/j.foodchem.2008.06.006
5. Giannone, V., Pitino, I., Pecorino, B., Todaro, A., Spina, A., Lauro, M. R., Tomaselli,
F., & Restuccia, C. (2016). Antimicrobial activity of essential oils in food
applications. International Journal of Food Microbiology, 235, 71–76.
https://doi.org/10.1016/j.ijfoodmicro.2016.07.019
6. Hartwig, A. (2016). Ortho-phenylphenol (OPP) und ortho-phenylphenol-Natrium
(OPP-Na) [MAK Value Documentation in German]. Deutsche
Forschungsgemeinschaft. https://doi.org/10.1007/978-3-662-49191-0_9
7. Hosoya, N., Motomura, K., Tagawa, E., Ogihara, C., Nagano, M., & Hosoya, H.
(2018). Effects of the fungicide ortho-phenylphenol (OPP) on the early development
of sea urchin eggs. Marine Environmental Research, 143, 24–29.
https://doi.org/10.1016/j.marenvres.2018.09.009
8. Jang, H.-J., Nde, C., Toghrol, F., & Bentley, W. E. (2008). Global transcriptome
analysis of Pseudomonas aeruginosa in response to ortho-phenylphenol. BMC
Genomics, 9, 411. https://doi.org/10.1186/1471-2164-9-411
9. Jewell, K. S., Wick, A., & Ternes, T. A. (2014). Biotransformation of orthophenylphenol in aquatic environments. Water Research, 48, 478–489.https://doi.org/10.1016/j.watres.2013.10.029
10. Karas, P. A., Makri, S., Papadopoulou, E. S., Ehaliotis, C., Menkissoglu-Spiroudi, U.,
& Karpouzas, D. G. (2016). Biodegradation of ortho-phenylphenol in agricultural
soil. Ecotoxicology and Environmental Safety, 124, 447–454.
https://doi.org/10.1016/j.ecoenv.2015.11.025
11. Karas, P., Metsoviti, A., Zisis, V., Ehaliotis, C., Omirou, M., Papadopoulou, E. S.,
Menkissoglou-Spiroudi, U., Manta, S., Komiotis, D., & Karpouzas, D. G. (2015).
Degradation pathways of ortho-phenylphenol in soil microbiomes. Science of the
Total Environment, 530–531, 129–139.
https://doi.org/10.1016/j.scitotenv.2015.05.073
12. Kuwahara, H., Ninomiya, J., & Morita, H. (2018). Biodegradation of orthophenylphenol by marine bacteria. Biocontrol Science, 23(3), 85–96.
https://doi.org/10.4265/bio.23.85
13. Nde, C. W., Jang, H.-J., Toghrol, F., & Bentley, W. E. (2008). Transcriptome
profiling of Escherichia coli exposed to ortho-phenylphenol. BMC Genomics, 9, 473.
https://doi.org/10.1186/1471-2164-9-473
14. Nixon, E., Brooks, J. D., Routh, P. A., Chittenden, J. T., & Baynes, R. E. (2017).
Dermal exposure assessment of ortho-phenylphenol. Journal of Applied Toxicology,
37(4), 508–512. https://doi.org/10.1002/jat.3364
15. Olak-Kucharczyk, M., & Ledakowicz, S. (2017). Advanced oxidation processes for
ortho-phenylphenol removal. Journal of Hazardous Materials, 333, 348–357.
https://doi.org/10.1016/j.jhazmat.2017.03.040
16. Perruchon, C., Patsioura, V., Vasileiadis, S., & Karpouzas, D. G. (2016). Impact of
pesticide residues on microbial communities. Pest Management Science, 72(1), 113–
124. https://doi.org/10.1002/ps.4045
17. Perruchon, C., Vasileiadis, S., Rousidou, C., Papadopoulou, E. S., Tanou, G.,
Samiotaki, M., Garagounis, C., Molassiotis, A., Papadopoulou, K. K., & Karpouzas,
D. G. (2017). Metabolic pathway and cell adaptation mechanisms in Sphingomonas
degrading ortho-phenylphenol. Scientific Reports, 7(1), 6449.
https://doi.org/10.1038/s41598-017-06744-4
18. Perruchon, C., Vasileiadis, S., Rousidou, C., Evangelia, P., Tanou, G., Samiotaki, M.,
Garagounis, C., Molassiotyis, A., Papadopoulou, K., & Karpouzas, D. (2018).
Correction: Metabolic pathways in Sphingomonas degrading ortho-phenylphenol.
Scientific Reports, 8, 4599. https://doi.org/10.1038/s41598-018-22708-y
19. Saad, B., Hana Haniff, N., Saleh, M., Hashim, N., Abu, A., & Ali, N. (2004).
Determination of ortho-phenylphenol, diphenyl, and diphenylamine in apples and
oranges using HPLC with fluorescence detection. Food Chemistry, 84(2), 313–317.
https://doi.org/10.1016/S0308-8146(03)00235-5
20. Yang, L., Kotani, A., Hakamata, H., & Kusu, F. (2004). Electrochemical detection of
ortho-phenylphenol in food. Analytical Sciences, 20(1), 199–203. https://doi.org/10.2116/analsci.20.199