CO-SENSITIZATION IN DYE-SENSITIZED SOLAR CELLS: A PATHWAY TO ENHANCED EFFICIENCY AND SUSTAINABLE ENERGY SOLUTIONS

Authors

  • Muhammad Shahid University of Gujrat, Gujrat, Pakistan, Author
  • Hamad Ahmade University of Management and Technology, Lahore, Pakistan Author
  • Syed Ahmad Raza Bokharid d George Brown College, M5T239, Toronto, Canada Author
  • Madiha Batool Government College University, Lahore, Pakistan, Author
  • Hafiz Muhammad Faizan Haider Government College University, Lahore, Pakistan, Author
  • Ejaz Ahmad Government College University, Lahore, Pakistan, Author
  • Abdul Shakoor Government College University, Lahore, Pakistan, Author
  • Majid Nazir Government College University, Lahore, Pakistan, Author
  • Uzman Khan Government College University, Lahore, Pakistan Author
  • Dr. Shahzad Murtazab Khwaja Fareed university of Engineering and Technology, Rahim yar khan, Pakistan, Author
  • Nasir Khan Lahore Garrison University, Lahore, Pakistan Author

Keywords:

Dyes Sensitized Solar Cells (DSSCs), Sensitizers and co-sensitizers, Metal sensitizers and metal-free sensitizers.

Abstract

The global pursuit of sustainable energy solutions has intensified, particularly in the face of energy crises and environmental concerns. Dyes Sensitized Solar Cells (DSSCs) have emerged as promising candidates, embodying eco-friendly technology. That review with 107 references, delves into the advancements made in enhancing the efficiency of DSSCs, focusing on the innovative approach of co-sensitization.

 

In the quest for improved performance, researchers have explored a plethora of metal complex sensitizers and metal-free sensitizers. While metal sensitizers exhibit superior efficiency, challenges such as cost and availability impede their widespread adoption. On the other hand, organic sensitizers, though cost-effective, grapple with efficiency limitations.

 

The review underscores co-sensitization as a transformative strategy, showcasing its potential to address existing shortcomings. By combining multiple sensitizers, co-sensitization facilitates efficient electron injection through precise energy alignment and molecular matching with sensitizers. The presence of co-sensitizers on the Titania surface creates a conducive environment, retarding electron recombination.

One notable advantage of co-sensitization was its ability to compensate for the absorption range deficiency inherent in individual sensitizer. The combinatorial loading of sensitizers not only extends the absorption spectrum but also ensures favorable spectral responses. That holistic approach positively impacts crucial photovoltaic properties such as current density, photovoltage, and fill factor.

The comprehensive exploration of co-sensitization in that review sheds light on its role as an innovative and emergent strategy in the field of DSSCs. The synergistic effects achieved through co-sensitization hold the key to overcoming the efficiency challenges posed by individual sensitizers. Ultimately, the enhanced efficiency achieved through co-sensitization positions DSSCs as viable and competitive contenders in the ongoing efforts to address energy crises while maintaining environmental sustainability.

 

 

References

Aung, S. H., Hao, Y., Oo, T. Z., & Boschloo, G. (2016). Journal of Photochemistry and Photobiology A: Chemistry, 325, 1–8. https://doi.org/10.1016/j.jphotochem.2016.03.018

Gao, P., Tsao, H. N., Yi, C., Grätzel, M., & Nazeeruddin, M. K. (2014). Advanced Energy Materials, 4(1). https://doi.org/10.1002/aenm.201400420

Grätzel, M. (2003). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145–153. https://doi.org/10.1016/S1389-5567(03)00026-1

Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Chemical Reviews, 110(11), 6595–6663. https://doi.org/10.1021/cr900356p

Hamann, T. W., Jensen, R. A., Martinson, A. B., Van Ryswyk, H., & Hupp, J. T. (2008). Energy & Environmental Science, 1(1), 66–78. https://doi.org/10.1039/B809672D

Jena, A., Mohanty, S. P., Kumar, P., Naduvath, J., Gondane, V., Lekha, P., Das, J., Narula,

H. K., Mallick, S., & Bhargava, P. (2012). Transactions of the Indian Ceramic Society, 71(1), 1–16. https://doi.org/10.1080/0371750X.2012.689201

Jiang, J.-Q., Sun, C.-L., Shi, Z.-F., & Zhang, H.-L. (2014). RSC Advances, 4(62), 32987–

https://doi.org/10.1039/C4RA04483C

Joshi, P., Korfiatis, D., Potamianou, S., & Thoma, K.-A. T. (2013). Russian Journal of Electrochemistry, 49(7), 628–632. https://doi.org/10.1134/S1023193513070076

Li, L.-L., & Diau, E. W.-G. (2013). Chemical Society Reviews, 42(1), 291–

https://doi.org/10.1039/C2CS35257E

Li, X.-Y., Zhang, C.-R., Wu, Y.-Z., Zhang, H.-M., Wang, W., Yuan, L.-H., Yang, H., Liu,

Z.-J., & Chen, H.-S. (2015). Journal of Molecular Sciences, 16(12), 27707– 27720. https://doi.org/10.3390/ijms161126053

Mishra, A., Fischer, M. K., & Bäuerle, P. (2009). Angewandte Chemie International Edition, 48(14), 2474–2499. https://doi.org/10.1002/anie.200804709

O’Regan, B., & Grätzel, M. (1991). Nature, 353(6346), 737–

https://doi.org/10.1038/353737a0

Peng, D., Tang, G., Hu, J., Xie, Q., Zhou, J., Zhang, W., & Zhong, C. (2015). Polymer Bulletin, 72(3), 653–669. https://doi.org/10.1007/s00289-015-1301-z

Ragoussi, M.-E., & Torres, T. (2015). Chemical Communications, 51(19), 3957–

https://doi.org/10.1039/C4CC09840A

Suhaimi, S., Shahimin, M. M., Alahmed, Z., Chyský, J., & Reshak, A. (2015). International Journal of Electrochemical Science, 10(4), 2859–2871.

Wang, X.-F., Koyama, Y., Kitao, O., Wada, Y., Sasaki, S.-i., Tamiaki, H., & Zhou, H. (2010). Biosensors and Bioelectronics, 25(9), 1970–

https://doi.org/10.1016/j.bios.2010.01.012

Xie, M., Wang, J., Bai, F.-Q., Hao, L., & Zhang, H.-X. (2015). Dyes and Pigments, 120, 74–

https://doi.org/10.1016/j.dyepig.2015.03.034

Yu, Z., Najafabadi, H. M., Xu, Y., Nonomura, K., Sun, L., & Kloo, L. (2011). Dalton Transactions, 40(33), 8361–8366. https://doi.org/10.1039/C1DT10618F

Yun, S., Freitas, J. N., Nogueira, A. F., Wang, Y., Ahmad, S., & Wang, Z.-S. (2016). Progress in Polymer Science, 59, 1–

https://doi.org/10.1016/j.progpolymsci.2016.03.003

Kloo, L. (2013). Chemical Communications, 49(58), 6580–

https://doi.org/10.1039/C3CC42731C

Nguyen, L. H., Mulmudi, H. K., Sabba, D., Kulkarni, S. A., Batabyal, S. K., Nonomura, K., Grätzel, M., & Mhaisalkar, S. G. (2012). Physical Chemistry Chemical Physics, 14(46), 16182–16186. https://doi.org/10.1039/C2CP43033F

Zhang, J., Lu, F., Qi, S., Zhao, Y., Wang, K., Zhang, B., & Feng, Y. (2016). Dyes and Pigments, 128, 296–303. https://doi.org/10.1016/j.dyepig.2016.01.048

Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F. E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K., & Grätzel, M. (2014). Nature Chemistry, 6(3), 242–247. https://doi.org/10.1038/nchem.1861

Wei, L., Yang, Y., Fan, R., Wang, P., Dong, Y., Zhou, W., & Luan, T. (2015). Journal of Power Sources, 293, 203–212. https://doi.org/10.1016/j.jpowsour.2015.05.073

Robson, K. C., Koivisto, B. D., Yella, A., Sporinova, B., Nazeeruddin, M. K., Baumgartner, T., Grätzel, M., & Berlinguette, C. P. (2011). Inorganic Chemistry, 50(12), 5494– 5508. https://doi.org/10.1021/ic200205m

Koyyada, G., Shome, S., Chandrasekharam, M., Sharma, G., & Singh, S. P. (2016). RSC Advances, 6(46), 41151–41155. https://doi.org/10.1039/C6RA04228A

Rao, G. H., Venkateswararao, A., Giribabu, L., Han, L., Bedja, I., Gupta, R. K., Islam, A., & Singh, S. P. (2016). Physical Chemistry Chemical Physics, 18(21), 14279–

https://doi.org/10.1039/C6CP01608A

Karki, I., Nakarmi, J., Mandal, P., & Chatterjee, S. (2013). Applied Solar Energy, 49(1), 40–

https://doi.org/10.3103/S0003701X13010071

Zhu, S., An, Z., Sun, X., Wu, Z., Chen, X., & Chen, P. (2015). Dyes and Pigments, 120, 85–

https://doi.org/10.1016/j.dyepig.2015.03.036

Han, L.-H., Zhang, C.-R., Zhe, J.-W., Jin, N.-Z., Shen, Y.-L., Wang, W., Gong, J.-J., Chen,

Y.-H., & Liu, Z.-J. (2013). International Journal of Molecular Sciences, 14(10), 20171– 20188. https://doi.org/10.3390/ijms141020171

Feng, Q., Zhang, Q., Lu, X., Wang, H., Zhou, G., & Wang, Z.-S. (2013). ACS Applied Materials & Interfaces, 5(18), 8982–8990. https://doi.org/10.1021/am402040g

Hardin, B. E., Snaith, H. J., & McGehee, M. D. (2012). Nature Photonics, 6(3), 162–

https://doi.org/10.1038/nphoton.2012.22

Holliman, P. J., Al-Salihi, K. J., Connell, A., Davies, M. L., Jones, E. W., & Worsley, D. A. (2014). RSC Advances, 4(5), 2515–2522. https://doi.org/10.1039/C3RA45912A

Liu, B., Chai, Q., Zhang, W., Wu, W., Tian, H., & Zhu, W.-H. (2016). Green Energy & Environment, 1(1), 84–90. https://doi.org/10.1016/j.gee.2016.04.003

Liu, J., Liu, B., Tang, Y., Zhang, W., Wu, W., Xie, Y., & Zhu, W.-H. (2015). Journal of Materials Chemistry C, 3(42), 11144–11150. https://doi.org/10.1039/C5TC02208A

Pepe, G., Cole, J. M., Waddell, P. G., & McKechnie, S. (2016). Molecular Systems Design & Engineering, 1(1), 86–98. https://doi.org/10.1039/C6ME00007A

Dürr, M., Bamedi, A., Yasuda, A., & Nelles, G. (2004). Applied Physics Letters, 84(17), 3397–3399. https://doi.org/10.1063/1.1723699

Choi, H., Kim, S., Kang, S. O., Ko, J., Kang, M. S., Clifford, J. N., Forneli, A., Palomares, E., Nazeeruddin, M. K., & Grätzel, M. (2008). Angewandte Chemie International Edition, 47(43), 8259–8263. https://doi.org/10.1002/anie.200802482

Lim, J., Lee, M., Balasingam, S. K., Kim, J., Kim, D., & Jun, Y. (2013). RSC Advances, 3(14), 4801–4805. https://doi.org/10.1039/C3RA40618A

Zhang, X., Lin, Y., Fang, B., Lin, Y., Hong, Y., & Wu, J. (2015). Journal of Materials Science: Materials in Electronics, 26(4), 2955–2961. https://doi.org/10.1007/s10854-015- 2775-z

Kusama, H., Funaki, T., Koumura, N., & Sayama, K. (2014). Physical Chemistry Chemical Physics, 16(30), 16166–16175. https://doi.org/10.1039/C4CP01652A

Wang, X., Yang, Y.-L., Wang, P., Li, L., Fan, R.-Q., Cao, W.-W., Yang, B., Wang, H., &

Liu, J.-Y. (2012). Dalton Transactions, 41(35), 10619–

https://doi.org/10.1039/C2DT31109A

Gong, J., Liang, J., & Sumathy, K. (2012). Renewable and Sustainable Energy Reviews, 16(8), 5848–5860. https://doi.org/10.1016/j.rser.2012.06.021

Mehmood, U., Rahman, S.-u., Harrabi, K., Hussein, I. A., & Reddy, B. (2014). Advances in Materials Science and Engineering, 2014, Article 974782. https://doi.org/10.1155/2014/974782

Ashbrook, L. N., & Elliott, C. M. (2013). The Journal of Physical Chemistry C, 117(8), 3853–3864. https://doi.org/10.1021/jp311844s

Basheer, B., Mathew, D., George, B. K., & Nair, C. R. (2014). Solar Energy, 108, 479–

https://doi.org/10.1016/j.solener.2014.07.020

Ludin, N. A., Mahmoud, A. A.-A., Mohamad, A. B., Kadhum, A. A. H., Sopian, K., & Karim,

N. S. A. (2014). Renewable and Sustainable Energy Reviews, 31, 386–

https://doi.org/10.1016/j.rser.2013.12.001

Han, L., Islam, A., Chen, H., Malapaka, C., Chiranjeevi, B., Zhang, S., Yang, X., & Yanagida, M. (2012). Energy & Environmental Science, 5(5), 6057–

https://doi.org/10.1039/C2EE03418B

Babu, D. D., Elsherbiny, D., Cheema, H., El-Shafei, A., & Adhikari, A. V. (2016). Dyes and Pigments, 132, 316–328. https://doi.org/10.1016/j.dyepig.2016.05.018

Pastore, M., & De Angelis, F. (2013). The Journal of Physical Chemistry Letters, 4(6), 956– 974. https://doi.org/10.1021/jz400207x

Housecroft, C. E., & Constable, E. C. (2015). Chemical Society Reviews, 44(23), 8386– 8398. https://doi.org/10.1039/C5CS00215J

Zhang, X., Grätzel, M., & Hua, J. (2016). Frontiers of Optoelectronics, 9(1), 3–

https://doi.org/10.1007/s12200-016-0603-8

Yum, J.-H., Baranoff, E., Wenger, S., Nazeeruddin, M. K., & Grätzel, M. (2011). Energy & Environmental Science, 4(3), 842–857. https://doi.org/10.1039/C0EE00536C

Katoh, R., & Furube, A. (2014). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20, 1–16. https://doi.org/10.1016/j.jphotochemrev.2014.04.001

Shiu, J.-W., Chang, Y.-C., Chan, C.-Y., Wu, H.-P., Hsu, H.-Y., Wang, C.-L., Lin, C.-Y., &

Diau, E. W.-G. (2015). Journal of Materials Chemistry A, 3(4), 1417– 1420. https://doi.org/10.1039/C4TA05803A

Brown, M. D., Parkinson, P., Torres, T., Miura, H., Herz, L. M., & Snaith, H. J. (2011). The Journal of Physical Chemistry C, 115(46), 23204–23208. https://doi.org/10.1021/jp2080895

Lan, C.-M., Wu, H.-P., Pan, T.-Y., Chang, C.-W., Chao, W.-S., Chen, C.-T., Wang, C.-L.,

Lin, C.-Y., & Diau, E. W.-G. (2012). Energy & Environmental Science, 5(5), 6460– 6464. https://doi.org/10.1039/C2EE21339A

Wu, H.-P., Ou, Z.-W., Pan, T.-Y., Lan, C.-M., Huang, W.-K., Lee, H.-W., Reddy, N. M.,

Chen, C.-T., Chao, W.-S., & Yeh, C.-Y. (2012). Energy & Environmental Science, 5(12), 9843–9848. https://doi.org/10.1039/C2EE23058A

Pan, J., Song, H., Lian, C., Liu, H., & Xie, Y. (2017). Dyes and Pigments, 136, 450–

https://doi.org/10.1016/j.dyepig.2017.01.027

Ding, W.-L., Cui, Y.-M., Yang, L.-N., Li, Q.-S., & Li, Z.-S. (2017). Dyes and Pigments, 136, 450–457. https://doi.org/10.1016/j.dyepig.2016.08.058

Cai, M., Pan, X., Liu, W., Sheng, J., Fang, X., Zhang, C., Huo, Z., Tian, H., Xiao, S., & Dai,

S. (2013). Journal of Materials Chemistry A, 1(16), 4885–

https://doi.org/10.1039/C3TA01623A

Zhang, L., Yang, Y., Fan, R., Wang, P., & Li, L. (2012). Dyes and Pigments, 92(3), 1314– 1319. https://doi.org/10.1016/j.dyepig.2011.09.017

Toor, R. A., Sayyad, M. H., Nasr, N., Sajjad, S., Shah, S. A. A., & Manzoor, T. (2016). International Journal of Sustainable Energy and Environmental Research, 5(1), 46–

https://doi.org/10.18488/journal.13/2016. 5.1/13.1.46.50

Chang, S., Wang, H., Hua, Y., Li, Q., Xiao, X., Wong, W.-K., Wong, W. Y., Zhu, X., & Chen, T. (2013). Journal of Materials Chemistry A, 1(37), 11553– 11558. https://doi.org/10.1039/C3TA12596A

Chen, B., Sun, L., & Xie, Y.-S. (2015). Chinese Chemical Letters, 26(7), 899– 904. https://doi.org/10.1016/j.cclet.2015.04.016

Muenmart, D., Prachumrak, N., Tarsang, R., Namungruk, S., Jungsuttiwong, S., Sudyoadsuk, T., Pattanasattayavong, P., & Promarak, V. (2016). RSC Advances, 6(44), 38481– 38493. https://doi.org/10.1039/C6RA04228A

Dong, Y., Wei, L., Fan, R., Yang, Y., & Wang, P. (2016). RSC Advances, 6(46), 39972–

https://doi.org/10.1039/C6RA04228A

Xu, Y., Qiang, L.-S., Yang, Y.-L., Wei, L.-G., Wang, P., & Fan, R.-Q. (2016). Chinese

Chemical Letters, 27(1), 127–134. https://doi.org/10.1016/j.cclet.2015.09.016

Babu, D. D., Su, R., El-Shafei, A., & Adhikari, A. V. (2016). RSC Advances, 6(36), 30205– 30216. https://doi.org/10.1039/C6RA04228A

Hill, J. P. (2016). Angewandte Chemie International Edition, 55(9), 2976–

https://doi.org/10.1002/anie.201510856

Sharma, G. D., Angaridis, P. A., Pipou, S., Zervaki, G. E., Nikolaou, V., Misra, R., & Coutsolelos, A. G. (2015). Organic Electronics, 25, 295–

https://doi.org/10.1016/j.orgel.2015.06.045

Fan, S., Lu, X., Sun, H., Zhou, G., Chang, Y. J., & Wang, Z.-S. (2016). Physical Chemistry Chemical Physics, 18(2), 932–938. https://doi.org/10.1039/C5CP06428A

Singh, M., Kurchania, R., Pockett, A., Ball, R., Koukaras, E., Cameron, P., & Sharma, G. (2015). Indian Journal of Physics, 89(10), 1041–1050. https://doi.org/10.1007/s12648-015-

-9

Wei, L., Na, Y., Yang, Y., Fan, R., Wang, P., & Li, L. (2015). Physical Chemistry Chemical Physics, 17(2), 1273–1280. https://doi.org/10.1039/C4CP04445A

Dong, L., Zheng, Z., Wang, Y., Li, X., Hua, J., & Hu, A. (2015). Journal of Materials Chemistry A, 3(22), 11607–11614. https://doi.org/10.1039/C5TA01998A

Elangovan, R., & Venkatachalam, P. (2015). Journal of Inorganic and Organometallic Polymers and Materials, 25(4), 823–831. https://doi.org/10.1007/s10904-015-0172-y

Fan, S.-Q., Kim, C., Fang, B., Liao, K.-X., Yang, G.-J., Li, C.-J., Kim, J.-J., & Ko, J.

(2011). The Journal of Physical Chemistry C, 115(15), 7747–

https://doi.org/10.1021/jp2007677

Fu, Z., Zhang, J., Yang, X., & Cao, W. (2011). Chinese Science Bulletin, 56(19), 2001– 2008. https://doi.org/10.1007/s11434-011-4534-8

Gao, S., Fan, R. Q., Wang, X. M., Qiang, L. S., Wei, L. G., Wang, P., Zhang, H. J., Yang, Y. L., & Wang, Y. L. (2015). Journal of Materials Chemistry A, 3(12), 6053–

https://doi.org/10.1039/C4TA07149A

Gao, S., Fan, R. Q., Wang, X. M., Qiang, L. S., Wei, L. G., Wang, P., Yang, Y. L., & Wang,

Y. L. (2015). Dalton Transactions, 44(41), 18187–

https://doi.org/10.1039/C5DT02861A

Chen, Y.-J., Chang, Y.-C., Lin, L.-Y., Chang, W.-C., & Chang, S.-M. (2015). Electrochimica Acta, 178, 414–419. https://doi.org/10.1016/j.electacta.2015.08.012

Singh, S. P., Chandrasekharam, M., Gupta, K. S., Islam, A., Han, L., & Sharma, G. (2013). Organic Electronics, 14(5), 1237–1241. https://doi.org/10.1016/j.orgel.2013.02.017

Yang, C.-H., Chen, P.-Y., Chen, W.-J., Wang, T.-L., & Shieh, Y.-T. (2013). Electrochimica Acta, 107, 170–177. https://doi.org/10.1016/j.electacta.2013.05.119

Escobar, M. A. M., & Jaramillo, F. (2015). Journal of Renewable Materials, 3(4), 281–

https://doi.org/10.7569/JRM.2015.634103

Chen, Y., Zeng, Z., Li, C., Wang, W., Wang, X., & Zhang, B. (2005). New Journal of Chemistry, 29(6), 773–776. https://doi.org/10.1039/B502342A

Yum, J.-H., Jang, S.-R., Walter, P., Geiger, T., Nüesch, F., Kim, S., Ko, J., Grätzel, M., & Nazeeruddin, M. K. (2007). Chemical Communications, 44, 4680–

https://doi.org/10.1039/B710919G

Yum, J.-H., Holcombe, T. W., Kim, Y., Yoon, J., Rakstys, K., Nazeeruddin, M. K., & Grätzel, M. (2012). Chemical Communications, 48(86), 10727–

https://doi.org/10.1039/C2CC35378A

Jiang, X., Marinado, T., Gabrielsson, E., Hagberg, D. P., Sun, L., & Hagfeldt, A. (2010). The Journal of Physical Chemistry C, 114(6), 2799–2805. https://doi.org/10.1021/jp910602v

Lin, R. Y.-Y., Yen, Y.-S., Cheng, Y.-T., Lee, C.-P., Hsu, Y.-C., Chou, H.-H., Hsu, C.-Y.,

Chen, Y.-C., Lin, J. T., & Ho, K.-C. (2012). Organic Letters, 14(14), 3612–

https://doi.org/10.1021/ol3014127

Lin, R. Y.-Y., Lin, H.-W., Yen, Y.-S., Chang, C.-H., Chou, H.-H., Chen, P.-W., Hsu, C.-Y.,

Chen, Y.-C., Lin, J. T., & Ho, K.-C. (2013). Energy & Environmental Science, 6(8), 2477– 2486. https://doi.org/10.1039/C3EE41622A

Magne, C., Urien, M., & Pauporté, T. (2013). RSC Advances, 3(17), 6315–

https://doi.org/10.1039/C3RA40652A

Ooyama, Y., Uenaka, K., Sato, T., Shibayama, N., & Ohshita, J. (2015). RSC Advances, 5(4), 2531–2535. https://doi.org/10.1039/C4RA12345A

Song, H. M., Seo, K. D., Kang, M. S., Choi, I. T., Kim, S. K., Eom, Y. K., Ryu, J. H., Ju, M.

J., & Kim, H. K. (2012). Journal of Materials Chemistry, 22(8), 3786–

https://doi.org/10.1039/C2JM14998A

Chang, J., Lee, C.-P., Kumar, D., Chen, P.-W., Lin, L.-Y., Thomas, K. J., & Ho, K.-C. (2013). Journal of Power Sources, 240, 779–

https://doi.org/10.1016/j.jpowsour.2013.04.078

Kim, Y. R., Yang, H. S., Ahn, K.-S., Kim, J. H., & Han, Y. S. (2014). Journal of the Korean Physical Society, 64(6), 904–909. https://doi.org/10.3938/jkps.64.904

Kumar, K. A., Manonmani, J., & Senthilselvan, J. (2014). Journal of Materials Science: Materials in Electronics, 25(12), 5296–5301. https://doi.org/10.1007/s10854-014-2304-5

Li, H., Wu, Y., Geng, Z., Liu, J., Xu, D., & Zhu, W. (2014). Journal of Materials Chemistry A, 2(35), 14649–14657. https://doi.org/10.1039/C4TA02698A

Agosta, R., Grisorio, R., De Marco, L., Romanazzi, G., Suranna, G., Gigli, G., & Manca, M. (2014). Chemical Communications, 50(65), 9451–

https://doi.org/10.1039/C4CC03959A

Hua, Y., Lee, L. T. L., Zhang, C., Zhao, J., Chen, T., Wong, W.-Y., Wong, W.-K., & Zhu,

X. (2015). Journal of Materials Chemistry A, 3(26), 13848–

https://doi.org/10.1039/C5TA02698A

Pei, K., Wu, Y., Li, H., Geng, Z., Tian, H., & Zhu, W.-H. (2015). ACS Applied Materials & Interfaces, 7(9), 5296–5304. https://doi.org/10.1021/acsami.5b00198

Rahman, M. M., Ko, M. J., & Lee, J.-J. (2015). Nanoscale, 7(8), 3526–

https://doi.org/10.1039/C4NR07098A

Cisneros, R., Beley, M., & Lapicque, F. (2016). Physical Chemistry Chemical Physics, 18(14), 9645–9651. https://doi.org/10.1039/C6CP00698A

Fang, M., Li, H., Li, Q., & Li, Z. (2016). RSC Advances, 6(46), 40750–

https://doi.org/10.1039/C6RA04228A

Islam, A., Akhtaruzzaman, M., Chowdhury, T. H., Qin, C., Han, L., Bedja, I. M., Stalder, R., Schanze, K. S., & Reynolds, J. R. (2016). ACS Applied Materials & Interfaces, 8(7), 4616–4623. https://doi.org/10.1021/acsami.5b11808

Nguyen, T. H., Suresh, T., & Kim, J. H. (2016). Organic Electronics, 30, 40–

https://doi.org/10.1016/j.orgel.2015.12.010

Kushwaha, S., & Bahadur, L. (2015). Journal of Luminescence, 161, 426–

https://doi.org/10.1016/j.jlumin.2015.01.034

Lin, L.-Y., Yeh, M.-H., Lee, C.-P., Chang, J., Baheti, A., Vittal, R., Thomas, K. J., & Ho, K.-C. (2014). Journal of Power Sources, 247, 906–

https://doi.org/10.1016/j.jpowsour.2013.09.030

Downloads

Published

2025-08-02

How to Cite

CO-SENSITIZATION IN DYE-SENSITIZED SOLAR CELLS: A PATHWAY TO ENHANCED EFFICIENCY AND SUSTAINABLE ENERGY SOLUTIONS. (2025). International Journal of NeuroOncology and Therapeutics, 1(1), 56-100. https://ijnot.com/index.php/ijnot/article/view/9

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

<< < 1 2