CO-SENSITIZATION IN DYE-SENSITIZED SOLAR CELLS: A PATHWAY TO ENHANCED EFFICIENCY AND SUSTAINABLE ENERGY SOLUTIONS
Keywords:
Dyes Sensitized Solar Cells (DSSCs), Sensitizers and co-sensitizers, Metal sensitizers and metal-free sensitizers.Abstract
The global pursuit of sustainable energy solutions has intensified, particularly in the face of energy crises and environmental concerns. Dyes Sensitized Solar Cells (DSSCs) have emerged as promising candidates, embodying eco-friendly technology. That review with 107 references, delves into the advancements made in enhancing the efficiency of DSSCs, focusing on the innovative approach of co-sensitization.
In the quest for improved performance, researchers have explored a plethora of metal complex sensitizers and metal-free sensitizers. While metal sensitizers exhibit superior efficiency, challenges such as cost and availability impede their widespread adoption. On the other hand, organic sensitizers, though cost-effective, grapple with efficiency limitations.
The review underscores co-sensitization as a transformative strategy, showcasing its potential to address existing shortcomings. By combining multiple sensitizers, co-sensitization facilitates efficient electron injection through precise energy alignment and molecular matching with sensitizers. The presence of co-sensitizers on the Titania surface creates a conducive environment, retarding electron recombination.
One notable advantage of co-sensitization was its ability to compensate for the absorption range deficiency inherent in individual sensitizer. The combinatorial loading of sensitizers not only extends the absorption spectrum but also ensures favorable spectral responses. That holistic approach positively impacts crucial photovoltaic properties such as current density, photovoltage, and fill factor.
The comprehensive exploration of co-sensitization in that review sheds light on its role as an innovative and emergent strategy in the field of DSSCs. The synergistic effects achieved through co-sensitization hold the key to overcoming the efficiency challenges posed by individual sensitizers. Ultimately, the enhanced efficiency achieved through co-sensitization positions DSSCs as viable and competitive contenders in the ongoing efforts to address energy crises while maintaining environmental sustainability.
References
Aung, S. H., Hao, Y., Oo, T. Z., & Boschloo, G. (2016). Journal of Photochemistry and Photobiology A: Chemistry, 325, 1–8. https://doi.org/10.1016/j.jphotochem.2016.03.018
Gao, P., Tsao, H. N., Yi, C., Grätzel, M., & Nazeeruddin, M. K. (2014). Advanced Energy Materials, 4(1). https://doi.org/10.1002/aenm.201400420
Grätzel, M. (2003). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145–153. https://doi.org/10.1016/S1389-5567(03)00026-1
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Chemical Reviews, 110(11), 6595–6663. https://doi.org/10.1021/cr900356p
Hamann, T. W., Jensen, R. A., Martinson, A. B., Van Ryswyk, H., & Hupp, J. T. (2008). Energy & Environmental Science, 1(1), 66–78. https://doi.org/10.1039/B809672D
Jena, A., Mohanty, S. P., Kumar, P., Naduvath, J., Gondane, V., Lekha, P., Das, J., Narula,
H. K., Mallick, S., & Bhargava, P. (2012). Transactions of the Indian Ceramic Society, 71(1), 1–16. https://doi.org/10.1080/0371750X.2012.689201
Jiang, J.-Q., Sun, C.-L., Shi, Z.-F., & Zhang, H.-L. (2014). RSC Advances, 4(62), 32987–
https://doi.org/10.1039/C4RA04483C
Joshi, P., Korfiatis, D., Potamianou, S., & Thoma, K.-A. T. (2013). Russian Journal of Electrochemistry, 49(7), 628–632. https://doi.org/10.1134/S1023193513070076
Li, L.-L., & Diau, E. W.-G. (2013). Chemical Society Reviews, 42(1), 291–
https://doi.org/10.1039/C2CS35257E
Li, X.-Y., Zhang, C.-R., Wu, Y.-Z., Zhang, H.-M., Wang, W., Yuan, L.-H., Yang, H., Liu,
Z.-J., & Chen, H.-S. (2015). Journal of Molecular Sciences, 16(12), 27707– 27720. https://doi.org/10.3390/ijms161126053
Mishra, A., Fischer, M. K., & Bäuerle, P. (2009). Angewandte Chemie International Edition, 48(14), 2474–2499. https://doi.org/10.1002/anie.200804709
O’Regan, B., & Grätzel, M. (1991). Nature, 353(6346), 737–
https://doi.org/10.1038/353737a0
Peng, D., Tang, G., Hu, J., Xie, Q., Zhou, J., Zhang, W., & Zhong, C. (2015). Polymer Bulletin, 72(3), 653–669. https://doi.org/10.1007/s00289-015-1301-z
Ragoussi, M.-E., & Torres, T. (2015). Chemical Communications, 51(19), 3957–
https://doi.org/10.1039/C4CC09840A
Suhaimi, S., Shahimin, M. M., Alahmed, Z., Chyský, J., & Reshak, A. (2015). International Journal of Electrochemical Science, 10(4), 2859–2871.
Wang, X.-F., Koyama, Y., Kitao, O., Wada, Y., Sasaki, S.-i., Tamiaki, H., & Zhou, H. (2010). Biosensors and Bioelectronics, 25(9), 1970–
https://doi.org/10.1016/j.bios.2010.01.012
Xie, M., Wang, J., Bai, F.-Q., Hao, L., & Zhang, H.-X. (2015). Dyes and Pigments, 120, 74–
https://doi.org/10.1016/j.dyepig.2015.03.034
Yu, Z., Najafabadi, H. M., Xu, Y., Nonomura, K., Sun, L., & Kloo, L. (2011). Dalton Transactions, 40(33), 8361–8366. https://doi.org/10.1039/C1DT10618F
Yun, S., Freitas, J. N., Nogueira, A. F., Wang, Y., Ahmad, S., & Wang, Z.-S. (2016). Progress in Polymer Science, 59, 1–
https://doi.org/10.1016/j.progpolymsci.2016.03.003
Kloo, L. (2013). Chemical Communications, 49(58), 6580–
https://doi.org/10.1039/C3CC42731C
Nguyen, L. H., Mulmudi, H. K., Sabba, D., Kulkarni, S. A., Batabyal, S. K., Nonomura, K., Grätzel, M., & Mhaisalkar, S. G. (2012). Physical Chemistry Chemical Physics, 14(46), 16182–16186. https://doi.org/10.1039/C2CP43033F
Zhang, J., Lu, F., Qi, S., Zhao, Y., Wang, K., Zhang, B., & Feng, Y. (2016). Dyes and Pigments, 128, 296–303. https://doi.org/10.1016/j.dyepig.2016.01.048
Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F. E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K., & Grätzel, M. (2014). Nature Chemistry, 6(3), 242–247. https://doi.org/10.1038/nchem.1861
Wei, L., Yang, Y., Fan, R., Wang, P., Dong, Y., Zhou, W., & Luan, T. (2015). Journal of Power Sources, 293, 203–212. https://doi.org/10.1016/j.jpowsour.2015.05.073
Robson, K. C., Koivisto, B. D., Yella, A., Sporinova, B., Nazeeruddin, M. K., Baumgartner, T., Grätzel, M., & Berlinguette, C. P. (2011). Inorganic Chemistry, 50(12), 5494– 5508. https://doi.org/10.1021/ic200205m
Koyyada, G., Shome, S., Chandrasekharam, M., Sharma, G., & Singh, S. P. (2016). RSC Advances, 6(46), 41151–41155. https://doi.org/10.1039/C6RA04228A
Rao, G. H., Venkateswararao, A., Giribabu, L., Han, L., Bedja, I., Gupta, R. K., Islam, A., & Singh, S. P. (2016). Physical Chemistry Chemical Physics, 18(21), 14279–
https://doi.org/10.1039/C6CP01608A
Karki, I., Nakarmi, J., Mandal, P., & Chatterjee, S. (2013). Applied Solar Energy, 49(1), 40–
https://doi.org/10.3103/S0003701X13010071
Zhu, S., An, Z., Sun, X., Wu, Z., Chen, X., & Chen, P. (2015). Dyes and Pigments, 120, 85–
https://doi.org/10.1016/j.dyepig.2015.03.036
Han, L.-H., Zhang, C.-R., Zhe, J.-W., Jin, N.-Z., Shen, Y.-L., Wang, W., Gong, J.-J., Chen,
Y.-H., & Liu, Z.-J. (2013). International Journal of Molecular Sciences, 14(10), 20171– 20188. https://doi.org/10.3390/ijms141020171
Feng, Q., Zhang, Q., Lu, X., Wang, H., Zhou, G., & Wang, Z.-S. (2013). ACS Applied Materials & Interfaces, 5(18), 8982–8990. https://doi.org/10.1021/am402040g
Hardin, B. E., Snaith, H. J., & McGehee, M. D. (2012). Nature Photonics, 6(3), 162–
https://doi.org/10.1038/nphoton.2012.22
Holliman, P. J., Al-Salihi, K. J., Connell, A., Davies, M. L., Jones, E. W., & Worsley, D. A. (2014). RSC Advances, 4(5), 2515–2522. https://doi.org/10.1039/C3RA45912A
Liu, B., Chai, Q., Zhang, W., Wu, W., Tian, H., & Zhu, W.-H. (2016). Green Energy & Environment, 1(1), 84–90. https://doi.org/10.1016/j.gee.2016.04.003
Liu, J., Liu, B., Tang, Y., Zhang, W., Wu, W., Xie, Y., & Zhu, W.-H. (2015). Journal of Materials Chemistry C, 3(42), 11144–11150. https://doi.org/10.1039/C5TC02208A
Pepe, G., Cole, J. M., Waddell, P. G., & McKechnie, S. (2016). Molecular Systems Design & Engineering, 1(1), 86–98. https://doi.org/10.1039/C6ME00007A
Dürr, M., Bamedi, A., Yasuda, A., & Nelles, G. (2004). Applied Physics Letters, 84(17), 3397–3399. https://doi.org/10.1063/1.1723699
Choi, H., Kim, S., Kang, S. O., Ko, J., Kang, M. S., Clifford, J. N., Forneli, A., Palomares, E., Nazeeruddin, M. K., & Grätzel, M. (2008). Angewandte Chemie International Edition, 47(43), 8259–8263. https://doi.org/10.1002/anie.200802482
Lim, J., Lee, M., Balasingam, S. K., Kim, J., Kim, D., & Jun, Y. (2013). RSC Advances, 3(14), 4801–4805. https://doi.org/10.1039/C3RA40618A
Zhang, X., Lin, Y., Fang, B., Lin, Y., Hong, Y., & Wu, J. (2015). Journal of Materials Science: Materials in Electronics, 26(4), 2955–2961. https://doi.org/10.1007/s10854-015- 2775-z
Kusama, H., Funaki, T., Koumura, N., & Sayama, K. (2014). Physical Chemistry Chemical Physics, 16(30), 16166–16175. https://doi.org/10.1039/C4CP01652A
Wang, X., Yang, Y.-L., Wang, P., Li, L., Fan, R.-Q., Cao, W.-W., Yang, B., Wang, H., &
Liu, J.-Y. (2012). Dalton Transactions, 41(35), 10619–
https://doi.org/10.1039/C2DT31109A
Gong, J., Liang, J., & Sumathy, K. (2012). Renewable and Sustainable Energy Reviews, 16(8), 5848–5860. https://doi.org/10.1016/j.rser.2012.06.021
Mehmood, U., Rahman, S.-u., Harrabi, K., Hussein, I. A., & Reddy, B. (2014). Advances in Materials Science and Engineering, 2014, Article 974782. https://doi.org/10.1155/2014/974782
Ashbrook, L. N., & Elliott, C. M. (2013). The Journal of Physical Chemistry C, 117(8), 3853–3864. https://doi.org/10.1021/jp311844s
Basheer, B., Mathew, D., George, B. K., & Nair, C. R. (2014). Solar Energy, 108, 479–
https://doi.org/10.1016/j.solener.2014.07.020
Ludin, N. A., Mahmoud, A. A.-A., Mohamad, A. B., Kadhum, A. A. H., Sopian, K., & Karim,
N. S. A. (2014). Renewable and Sustainable Energy Reviews, 31, 386–
https://doi.org/10.1016/j.rser.2013.12.001
Han, L., Islam, A., Chen, H., Malapaka, C., Chiranjeevi, B., Zhang, S., Yang, X., & Yanagida, M. (2012). Energy & Environmental Science, 5(5), 6057–
https://doi.org/10.1039/C2EE03418B
Babu, D. D., Elsherbiny, D., Cheema, H., El-Shafei, A., & Adhikari, A. V. (2016). Dyes and Pigments, 132, 316–328. https://doi.org/10.1016/j.dyepig.2016.05.018
Pastore, M., & De Angelis, F. (2013). The Journal of Physical Chemistry Letters, 4(6), 956– 974. https://doi.org/10.1021/jz400207x
Housecroft, C. E., & Constable, E. C. (2015). Chemical Society Reviews, 44(23), 8386– 8398. https://doi.org/10.1039/C5CS00215J
Zhang, X., Grätzel, M., & Hua, J. (2016). Frontiers of Optoelectronics, 9(1), 3–
https://doi.org/10.1007/s12200-016-0603-8
Yum, J.-H., Baranoff, E., Wenger, S., Nazeeruddin, M. K., & Grätzel, M. (2011). Energy & Environmental Science, 4(3), 842–857. https://doi.org/10.1039/C0EE00536C
Katoh, R., & Furube, A. (2014). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20, 1–16. https://doi.org/10.1016/j.jphotochemrev.2014.04.001
Shiu, J.-W., Chang, Y.-C., Chan, C.-Y., Wu, H.-P., Hsu, H.-Y., Wang, C.-L., Lin, C.-Y., &
Diau, E. W.-G. (2015). Journal of Materials Chemistry A, 3(4), 1417– 1420. https://doi.org/10.1039/C4TA05803A
Brown, M. D., Parkinson, P., Torres, T., Miura, H., Herz, L. M., & Snaith, H. J. (2011). The Journal of Physical Chemistry C, 115(46), 23204–23208. https://doi.org/10.1021/jp2080895
Lan, C.-M., Wu, H.-P., Pan, T.-Y., Chang, C.-W., Chao, W.-S., Chen, C.-T., Wang, C.-L.,
Lin, C.-Y., & Diau, E. W.-G. (2012). Energy & Environmental Science, 5(5), 6460– 6464. https://doi.org/10.1039/C2EE21339A
Wu, H.-P., Ou, Z.-W., Pan, T.-Y., Lan, C.-M., Huang, W.-K., Lee, H.-W., Reddy, N. M.,
Chen, C.-T., Chao, W.-S., & Yeh, C.-Y. (2012). Energy & Environmental Science, 5(12), 9843–9848. https://doi.org/10.1039/C2EE23058A
Pan, J., Song, H., Lian, C., Liu, H., & Xie, Y. (2017). Dyes and Pigments, 136, 450–
https://doi.org/10.1016/j.dyepig.2017.01.027
Ding, W.-L., Cui, Y.-M., Yang, L.-N., Li, Q.-S., & Li, Z.-S. (2017). Dyes and Pigments, 136, 450–457. https://doi.org/10.1016/j.dyepig.2016.08.058
Cai, M., Pan, X., Liu, W., Sheng, J., Fang, X., Zhang, C., Huo, Z., Tian, H., Xiao, S., & Dai,
S. (2013). Journal of Materials Chemistry A, 1(16), 4885–
https://doi.org/10.1039/C3TA01623A
Zhang, L., Yang, Y., Fan, R., Wang, P., & Li, L. (2012). Dyes and Pigments, 92(3), 1314– 1319. https://doi.org/10.1016/j.dyepig.2011.09.017
Toor, R. A., Sayyad, M. H., Nasr, N., Sajjad, S., Shah, S. A. A., & Manzoor, T. (2016). International Journal of Sustainable Energy and Environmental Research, 5(1), 46–
https://doi.org/10.18488/journal.13/2016. 5.1/13.1.46.50
Chang, S., Wang, H., Hua, Y., Li, Q., Xiao, X., Wong, W.-K., Wong, W. Y., Zhu, X., & Chen, T. (2013). Journal of Materials Chemistry A, 1(37), 11553– 11558. https://doi.org/10.1039/C3TA12596A
Chen, B., Sun, L., & Xie, Y.-S. (2015). Chinese Chemical Letters, 26(7), 899– 904. https://doi.org/10.1016/j.cclet.2015.04.016
Muenmart, D., Prachumrak, N., Tarsang, R., Namungruk, S., Jungsuttiwong, S., Sudyoadsuk, T., Pattanasattayavong, P., & Promarak, V. (2016). RSC Advances, 6(44), 38481– 38493. https://doi.org/10.1039/C6RA04228A
Dong, Y., Wei, L., Fan, R., Yang, Y., & Wang, P. (2016). RSC Advances, 6(46), 39972–
https://doi.org/10.1039/C6RA04228A
Xu, Y., Qiang, L.-S., Yang, Y.-L., Wei, L.-G., Wang, P., & Fan, R.-Q. (2016). Chinese
Chemical Letters, 27(1), 127–134. https://doi.org/10.1016/j.cclet.2015.09.016
Babu, D. D., Su, R., El-Shafei, A., & Adhikari, A. V. (2016). RSC Advances, 6(36), 30205– 30216. https://doi.org/10.1039/C6RA04228A
Hill, J. P. (2016). Angewandte Chemie International Edition, 55(9), 2976–
https://doi.org/10.1002/anie.201510856
Sharma, G. D., Angaridis, P. A., Pipou, S., Zervaki, G. E., Nikolaou, V., Misra, R., & Coutsolelos, A. G. (2015). Organic Electronics, 25, 295–
https://doi.org/10.1016/j.orgel.2015.06.045
Fan, S., Lu, X., Sun, H., Zhou, G., Chang, Y. J., & Wang, Z.-S. (2016). Physical Chemistry Chemical Physics, 18(2), 932–938. https://doi.org/10.1039/C5CP06428A
Singh, M., Kurchania, R., Pockett, A., Ball, R., Koukaras, E., Cameron, P., & Sharma, G. (2015). Indian Journal of Physics, 89(10), 1041–1050. https://doi.org/10.1007/s12648-015-
-9
Wei, L., Na, Y., Yang, Y., Fan, R., Wang, P., & Li, L. (2015). Physical Chemistry Chemical Physics, 17(2), 1273–1280. https://doi.org/10.1039/C4CP04445A
Dong, L., Zheng, Z., Wang, Y., Li, X., Hua, J., & Hu, A. (2015). Journal of Materials Chemistry A, 3(22), 11607–11614. https://doi.org/10.1039/C5TA01998A
Elangovan, R., & Venkatachalam, P. (2015). Journal of Inorganic and Organometallic Polymers and Materials, 25(4), 823–831. https://doi.org/10.1007/s10904-015-0172-y
Fan, S.-Q., Kim, C., Fang, B., Liao, K.-X., Yang, G.-J., Li, C.-J., Kim, J.-J., & Ko, J.
(2011). The Journal of Physical Chemistry C, 115(15), 7747–
https://doi.org/10.1021/jp2007677
Fu, Z., Zhang, J., Yang, X., & Cao, W. (2011). Chinese Science Bulletin, 56(19), 2001– 2008. https://doi.org/10.1007/s11434-011-4534-8
Gao, S., Fan, R. Q., Wang, X. M., Qiang, L. S., Wei, L. G., Wang, P., Zhang, H. J., Yang, Y. L., & Wang, Y. L. (2015). Journal of Materials Chemistry A, 3(12), 6053–
https://doi.org/10.1039/C4TA07149A
Gao, S., Fan, R. Q., Wang, X. M., Qiang, L. S., Wei, L. G., Wang, P., Yang, Y. L., & Wang,
Y. L. (2015). Dalton Transactions, 44(41), 18187–
https://doi.org/10.1039/C5DT02861A
Chen, Y.-J., Chang, Y.-C., Lin, L.-Y., Chang, W.-C., & Chang, S.-M. (2015). Electrochimica Acta, 178, 414–419. https://doi.org/10.1016/j.electacta.2015.08.012
Singh, S. P., Chandrasekharam, M., Gupta, K. S., Islam, A., Han, L., & Sharma, G. (2013). Organic Electronics, 14(5), 1237–1241. https://doi.org/10.1016/j.orgel.2013.02.017
Yang, C.-H., Chen, P.-Y., Chen, W.-J., Wang, T.-L., & Shieh, Y.-T. (2013). Electrochimica Acta, 107, 170–177. https://doi.org/10.1016/j.electacta.2013.05.119
Escobar, M. A. M., & Jaramillo, F. (2015). Journal of Renewable Materials, 3(4), 281–
https://doi.org/10.7569/JRM.2015.634103
Chen, Y., Zeng, Z., Li, C., Wang, W., Wang, X., & Zhang, B. (2005). New Journal of Chemistry, 29(6), 773–776. https://doi.org/10.1039/B502342A
Yum, J.-H., Jang, S.-R., Walter, P., Geiger, T., Nüesch, F., Kim, S., Ko, J., Grätzel, M., & Nazeeruddin, M. K. (2007). Chemical Communications, 44, 4680–
https://doi.org/10.1039/B710919G
Yum, J.-H., Holcombe, T. W., Kim, Y., Yoon, J., Rakstys, K., Nazeeruddin, M. K., & Grätzel, M. (2012). Chemical Communications, 48(86), 10727–
https://doi.org/10.1039/C2CC35378A
Jiang, X., Marinado, T., Gabrielsson, E., Hagberg, D. P., Sun, L., & Hagfeldt, A. (2010). The Journal of Physical Chemistry C, 114(6), 2799–2805. https://doi.org/10.1021/jp910602v
Lin, R. Y.-Y., Yen, Y.-S., Cheng, Y.-T., Lee, C.-P., Hsu, Y.-C., Chou, H.-H., Hsu, C.-Y.,
Chen, Y.-C., Lin, J. T., & Ho, K.-C. (2012). Organic Letters, 14(14), 3612–
https://doi.org/10.1021/ol3014127
Lin, R. Y.-Y., Lin, H.-W., Yen, Y.-S., Chang, C.-H., Chou, H.-H., Chen, P.-W., Hsu, C.-Y.,
Chen, Y.-C., Lin, J. T., & Ho, K.-C. (2013). Energy & Environmental Science, 6(8), 2477– 2486. https://doi.org/10.1039/C3EE41622A
Magne, C., Urien, M., & Pauporté, T. (2013). RSC Advances, 3(17), 6315–
https://doi.org/10.1039/C3RA40652A
Ooyama, Y., Uenaka, K., Sato, T., Shibayama, N., & Ohshita, J. (2015). RSC Advances, 5(4), 2531–2535. https://doi.org/10.1039/C4RA12345A
Song, H. M., Seo, K. D., Kang, M. S., Choi, I. T., Kim, S. K., Eom, Y. K., Ryu, J. H., Ju, M.
J., & Kim, H. K. (2012). Journal of Materials Chemistry, 22(8), 3786–
https://doi.org/10.1039/C2JM14998A
Chang, J., Lee, C.-P., Kumar, D., Chen, P.-W., Lin, L.-Y., Thomas, K. J., & Ho, K.-C. (2013). Journal of Power Sources, 240, 779–
https://doi.org/10.1016/j.jpowsour.2013.04.078
Kim, Y. R., Yang, H. S., Ahn, K.-S., Kim, J. H., & Han, Y. S. (2014). Journal of the Korean Physical Society, 64(6), 904–909. https://doi.org/10.3938/jkps.64.904
Kumar, K. A., Manonmani, J., & Senthilselvan, J. (2014). Journal of Materials Science: Materials in Electronics, 25(12), 5296–5301. https://doi.org/10.1007/s10854-014-2304-5
Li, H., Wu, Y., Geng, Z., Liu, J., Xu, D., & Zhu, W. (2014). Journal of Materials Chemistry A, 2(35), 14649–14657. https://doi.org/10.1039/C4TA02698A
Agosta, R., Grisorio, R., De Marco, L., Romanazzi, G., Suranna, G., Gigli, G., & Manca, M. (2014). Chemical Communications, 50(65), 9451–
https://doi.org/10.1039/C4CC03959A
Hua, Y., Lee, L. T. L., Zhang, C., Zhao, J., Chen, T., Wong, W.-Y., Wong, W.-K., & Zhu,
X. (2015). Journal of Materials Chemistry A, 3(26), 13848–
https://doi.org/10.1039/C5TA02698A
Pei, K., Wu, Y., Li, H., Geng, Z., Tian, H., & Zhu, W.-H. (2015). ACS Applied Materials & Interfaces, 7(9), 5296–5304. https://doi.org/10.1021/acsami.5b00198
Rahman, M. M., Ko, M. J., & Lee, J.-J. (2015). Nanoscale, 7(8), 3526–
https://doi.org/10.1039/C4NR07098A
Cisneros, R., Beley, M., & Lapicque, F. (2016). Physical Chemistry Chemical Physics, 18(14), 9645–9651. https://doi.org/10.1039/C6CP00698A
Fang, M., Li, H., Li, Q., & Li, Z. (2016). RSC Advances, 6(46), 40750–
https://doi.org/10.1039/C6RA04228A
Islam, A., Akhtaruzzaman, M., Chowdhury, T. H., Qin, C., Han, L., Bedja, I. M., Stalder, R., Schanze, K. S., & Reynolds, J. R. (2016). ACS Applied Materials & Interfaces, 8(7), 4616–4623. https://doi.org/10.1021/acsami.5b11808
Nguyen, T. H., Suresh, T., & Kim, J. H. (2016). Organic Electronics, 30, 40–
https://doi.org/10.1016/j.orgel.2015.12.010
Kushwaha, S., & Bahadur, L. (2015). Journal of Luminescence, 161, 426–
https://doi.org/10.1016/j.jlumin.2015.01.034
Lin, L.-Y., Yeh, M.-H., Lee, C.-P., Chang, J., Baheti, A., Vittal, R., Thomas, K. J., & Ho, K.-C. (2014). Journal of Power Sources, 247, 906–
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Shahid, Hamad Ahmade, Syed Ahmad Raza Bokharid, Madiha Batool, Hafiz Muhammad Faizan Haider, Ejaz Ahmad, Abdul Shakoor, Majid Nazir, Uzman Khan, Dr. Shahzad Murtazab, Nasir Khan (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.